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Abstract—This paper reports on the structure of a large-signal
neural-network (NN) high electron-mobility transistor (HEMT)
model as determined by a pruning technique and a genetic
algorithm. The bias-dependent intrinsic elements of an HEMT’s
equivalent circuit are described by a generalized multilayered NN
whose inputs are the gate-to-source bias (Vgs) and the drain-to-
source bias (Vds). Using Cgs data as an example, we began by
experimentally examining some of the features of the multilay-
ered NN model to obtain rules-of-thumb on choosing training
parameters and other information for succeeding studies. We
then developed and studied a novel pruning technique to optimize
the Cgs NN model. Excessively large NN configurations can be
reduced to an appropriate size by means of a weight decay,
which is based on the analysis of a synaptic connection’s activity.
Finally, we employed a genetic algorithm for the same purpose.
By representing the configuration of a standard multilayered NN
as a chromosome, the optimum configuration of aCgs model
was obtained through a simulated evolution process. For this
approach, the configuration of an NN that simultaneously repre-
sents seven intrinsic elements (Cgs; Ri; � � � ; Cds) of an equivalent
circuit was also shown for comparison to previous work. We suc-
cessfully obtained simplified NN models using both approaches.
The advantages and disadvantages of these two approaches are
discussed in the conclusion. To our knowledge, this is the first
report to clarify the general process of building an NN device
model.

Index Terms—Genetic algorithm, HEMT, large-signal model,
neural network, pruning algorithm.

I. INTRODUCTION

T HE popularization of high-frequency wireless systems
demands an effective method to quickly and accurately

design components. Large-signal modeling for active devices,
such as high electron-mobility transistors (HEMT’s), is the
most fundamental technology available to meet this demand.
Recently, novel models based on neural networks (NN’s) have
been reported [1]–[3]. As in closed-form equation models [4],
[5], NN’s have the adaptability necessary to represent a strong
nonlinearlity. However, closed-form equation models must be
changed to fit the particular device type. NN’s can support any
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number and type of nonlinear features by simply changing
their configurations.

As with the look-up table model [6], NN’s are highly
accurate. However, the look-up table model requires a large
database, which can sometimes reach several megabytes. The
response of the NN can only be determined by using a few
hundred coefficients [3].

The NN model overcomes the drawbacks of the closed-form
and look-up table models, while retaining their advantages.
However, it is difficult to determine the proper configuration
with this attractive NN. As a result, the NN models reported
are almost always limited to a three-layer configuration, which
can represent either a single large-signal element [2] or all
elements with a large number of neurons [1].

In this paper, we report on a pruning approach [7], [8]
and a genetic approach [9]–[11] to determine the optimum
multilayered large-signal NN model of an HEMT.

To enable its future implementation on standard circuit sim-
ulators, we characterized the HEMT’s large-signal behavior
in terms of the intrinsic elements of a conventional small-
signal equivalent circuit [12]. The bias-dependent elements
are described by an NN composed of an arbitrary number
of neurons and layers (called a generalized multilayered NN).

We first examined some of the features of multilayered NN’s
for a model experimentally, in order to collect useful
information for succeeding studies.

Compared to other significant large-signal elements such
as , is more difficult to model with the conventional
closed-form equation [5]. Thus, the model is preferable
for revealing the usefulness of the NN approach.

We then developed and studied a novel pruning technique to
determine the structure of an NN. This technique causes NN’s
with larger than necessary configurations to lose their unimpor-
tant synaptic connections (including those of neurons) during
back-propagation training to eventually achieve the optimum
configuration [7], [8]. The removal of these connections are
done by a weight decay based on an analysis of the activity
of the synaptic connections.

We then applied a genetic algorithm [9], [10] for the same
purpose. The configuration of the NN is assumed to be a
characteristic of a virtual creature [11]. By simulating the
evolution of a group of these virtual creatures, we obtained
not only a model, but also a model that simultaneously

0018–9480/98$10.00 1998 IEEE



1368 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 10, OCTOBER 1998

Fig. 1. Multilayered NN. Each circle is a neuron, and the boxes enclosing several neurons are layers. At the far left is the input layer and at the far right is
the output layer. The neuron at the bottom of each layer, excluding the output layer, provides bias values to the neurons in the succeeding layer.

represents all the intrinsic elements of an HEMT’s equivalent
circuit in order to compare it with our previous work [3].

Finally, we evaluated the advantages and disadvantages of
the above two methods.

II. M ULTILAYERED NN’S

For its future implementation on common-circuit simula-
tors, we characterized the large-signal behavior of an HEMT
in terms of the intrinsic elements of a conventional small-
signal equivalent circuit. The measured data of these elements
versus and was obtained from multibias -parameter
measurements [12].

Fig. 1 shows the generalized multilayered NN used to model
the data. In this figure, we assume that the number of layers is

and that the th layer includes neurons. The bottom
neuron of each layer, excluding the output layer, supplies the
bias to the neurons in the succeeding layer.

We abbreviated the network configuration to (
) and express an NN having such a configuration as

.
We adopted a batch-mode back-propagation algorithm to

train this NN [3].
To obtain a training convergence and good extrapolations,

we normalized the raw data and bias voltages within a common
range of 0–1 throughout this paper [3]. We then defined the
set of input data vectors and teaching data vectors as
follows:

(1)

(2)

where subscript denotes the number of
bias points, and denotes a sigmoid function defined as

(3)

In (3), and are parameters. Then, in (1)
and in (2) are determined independently
according to the desired data range. For example, if

to V, then and would be good
choices.

Generally, when the th data is supplied to the NN, the
input to the th neuron in the th layer is described as

(4)

where denotes the weighting factor that connects the
th neuron in the th layer with the th neuron in the
th layer.
The output from this neuron is represented as

(5)

In the back-propagation algorithm, the network adaptation
is evaluated by

(6)

where is the network output (we
fixed the subscript of the bias neuron to zero for convenience
in programming, so the subscript of the neurons in the output
layer begins with one).

The correction terms in the training iterations are given by

(7)

where denotes the loop counter [3].
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Fig. 2. Error contours in relation to learning rate� and momentum factor�. The range ofE is defined above. The network configuration was (2, 5, 5, 1).
The number of iterations was fixed at 10 000. A minimum error was stably achieved in the vicinity of� = 0:9 and� = 0:8.

NN’s require several parameters, not only for training, but
also for specifying the network configuration. However, their
effects on the training characteristics have not been sufficiently
analyzed, especially in the case of multilayered NN’s. Us-
ing a model as an example, we experimentally studied
various features of a multilayered NN to obtain guidelines
for subsequent studies. The data referred to throughout this
paper corresponds to an HEMT with a 0.25-m-long and
100- m-wide gate.

Fig. 2 shows the fitting error contours versus the parameters
(learning rate) and (momentum factor) in the case of an

NN with a (2, 5, 5, 1) configuration. The number of iterations
is 10 000. A minimum number of errors can be obtained in the
vicinity of and . These values generate good
results for NN’s of different network configurations. Therefore,
we fixed them at these values.

Fig. 3 shows the fitting error behavior versus the number of
iterations for NN’s with configurations of (2, 5, 1), (2, 5, 5, 1),
and (2, 5, 5, 5, 1). It should be noted that the training
curve of the (2, 5, 5, 1)-NN fluctuates near the end of the

iterations. A similar phenomena can be observed with different
combinations of network configurations,, and , but it is
currently difficult to predict its cause. This test was also
performed on NN’s with other configurations, and we presume
that it is acceptable to fix the maximum number of iterations
to 10 000.

Moreover, the genetic approach [11] is supposedly much
more time-consuming than other approaches [7], [8]. It is
helpful to compare the calculation time of one training period
against NN’s of various configurations. Fig. 4 shows the
calculation time required for one iteration relative to the
network configuration. The machine we used was an HP-
712/80. This graph allows us to predict the total training time
and to assign the rational number of layers (and neurons) to
our machine from the viewpoint of calculation costs.

III. PRUNING TECHNIQUE

A pruning technique [7], [8] is analogous to the creation
of synaptic connections in actual life forms, i.e., many (or
highly redundant) synaptic connections are first formed as
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Fig. 3. Error versus number of iterations with� = 0:9 and� = 0:8 used
for each case. The graph shows the training curves of (a) a (2, 5, 1)-NN,
(b) a (2, 5, 5, 1)-NN, and (c) a (2, 5, 5, 5, 1)-NN. Some fluctuations appear
on the curves.

Fig. 4. Time consumption for one training cycle relative to the number of
neurons per layer. Lines (a)–(e) represent NN’s with 1–5 hidden layers. For
example, the rational number of neurons for a five-layer (three hidden layers)
NN corresponding to a single-hidden-layer NN composed of 1000 neurons
is 40.

a blueprint in a gene. Unnecessary connections are then
terminated according to elementary training (infancy) in a
particular habitat. This initial training determines the basic
response style of an individual.

A. Synaptic Connection Activities

The predominant part of previously proposed pruning tech-
niques commonly focus on the magnitude of the weighting
factors, which are minimized by including some cost function
in an error used for the original back-propagation [7], [8].
However, since these magnitudes do not necessarily represent
the complexity of an NN, the resultant NN can sometimes have
only small weighting factors. We thus developed and studied
a novel approach that evaluates the importance of synaptic
connections according to their activity.

During one training period, the mean information flow
through a weighting factor is represented as

(8)

where denotes the number of layers, is the output from
the th neuron in the th layer, denotes the amount of data,
and

(9)

At this point, the th neuron in the th layer accepts the net
information

(10)

where denotes the number of active neurons in theth
layer.

We then introduced the following new activity of :

(11)

B. Implementation and Measurement

Fig. 5 shows the flowchart for our pruning technique. We
confined the pruning routine to take place within a normal
back-propagation process [3], [7]. An initial NN of excessive
size is generated, and the pruning thresholdis set to ,
where ( ) is a parameter and is the given objective
error level.

To successfully eliminate the inessential connections, they
should be removed after pertinent connections have been
sufficiently specialized for certain stimulations (elementary
training). Parameter is adjusted when this specialization is
expected as having been completed, and we usually use a
convenient value of 2–10.

If the output error falls below , we calculate the activity
of each weighting factor and eliminate or decay it according
to the following three rules.

Rule 1: If , then is terminated (for each
neuron).

This means that the output of a sigmoid function is confined
to a range between zero and one, and if a weighting factor
smaller than one only acts to reduce the significance of the
transmitted information, then it should be removed. This is
done by assuming that “1 is small for ” and that “a
significant is typically larger than unity after elementary
training has finished.”

Rule 2: If , then is decayed (for each neuron,
except the biasing neuron). The decaying quantity we used is

(12)

where is a parameter to adjust the decaying speed for each
iteration. We used 0.2 for micron. This decaying rate is kept
until the next round of pruning occurs.

Rule 2 evaluates the activity of connection to the th
neuron in the th layer from the viewpoint of net information
flow.

Since Rule 2 is no longer effective for biasing neuron
connections or neurons having a single connection, the output
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Fig. 5. Flowchart of pruning algorithm.

error in which the weighting factor in question is forced to zero
is used as an alternative to Rule 2. Thus, we defined Rule 3 as

We then updated to

(13)

where is the reduction rate of .
then approaches according to how many times the NN
underwent the pruning process. The significant weighting
factors are updated with (7), and the inessential ones are
decayed with (12). If is not smaller than , steps 2–5
in Fig. 5 are repeated.

We applied this algorithm to a (2, 5, 5, 1)-NN for modeling
large-signal . Fig. 6 shows the obtained NN. Due to the
elementary training, our pruning can generate a sufficiently
simplified network, as well as establish a good convergence.
Fig. 7 shows its training curve. Even though some peaks
resulting from a hard pruning appeared during the training
(see Rule 1), elementary-trained NN’s exhibit stable training.

Fig. 6. NN model forCgs obtained by pruning. Unnecessary connections
and neurons have been terminated.

Fig. 7. Training curve ofCgs model with pruning.

Moreover, note that no fluctuations appear on the training
curve, despite their presence on the original (2, 5, 5, 1)-NN.

IV. GENETIC ALGORITHM

A. Virtual Creatures

A genetic algorithm [9], [10] is a method used to solve
problems such as optimizations via a computer simulation of
the evolutionary process of the population of virtual creatures.
A virtual creature has a chromosome that determines its degree
of fitness to a particular habitat. This chromosome is composed
of a set of genes.

We assume that the population includes members, and
that the th individual has a chromosome and a fitness
value defined as

(14)

and

(15)

where denotes each gene, and is
the number of genes in one chromosome. Functionin (15)



1372 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 10, OCTOBER 1998

Fig. 8. Flowchart of genetic algorithm.

calculates the fitness value of the chromosome, which changes
according to the type of application [11].

B. Algorithm

Fig. 8 is a flowchart of a genetic algorithm [11]. First we
generate an initial population composed of individuals and
initialize the chromosome of each with random values. We
then calculate each individual’s fitness and rearrange them in
order of increasing fitness. The population undergoes natural
selection, reproduction, and the succession of generations.
Steps 2–4 are repeated until either the population adequately
fits the conditions or the number of generations reaches its
maximum value.

Fig. 9 illustrates steps 3 and 4 (from Fig. 8), which are the
significant steps in this algorithm. In this figure, the block on
the left shows the rearranged population at theth generation.
The individual at the top of the block has the maximum fitness
and the individual at the bottom has the minimum fitness.

The block on the right illustrates the population at the
succeeding generation in the middle of the generation shift.

In natural selection, we weed out% of the creatures from
the individuals having the lowest fitness value, i.e.,

individuals are terminated from the current (th)
population. This process is analogous to natural selection with

Fig. 9. Natural selection, reproduction (mutation), and generation shift. The
block on the right represents the rearranged population in the order of
increasing fitness at thekth generation. Individualsa and b are selected at
a probability ofPa andPb from the population at thekth generation, and
generate their offspringab at the(k+1)th generation. Hatched areas denote
the individuals to be removed.

being the selection rate. Consequently, individuals
survived. Among the survivors, and allowing for duplication,
we pick pairs of individuals and generate their offspring.

At this point, the th individual is randomly selected by the
following probability [11]:

(16)

This means that an individual with a higher fitness is inclined
to have more offspring. This process is regarded as being
analogous to reproduction.

In the reproduction process, when individualsand are
selected as one of these pairs, theth gene of their offspring is
chosen from theth gene in at a probability of or from
the th gene in at a probability of . is called the
crossover rate. At the same time, each offspring’s gene also
suffers from a mutation at a probability of%. This mutation
rate should remain rather low because too many mutants will
disrupt the evolutionary convergence of the population.

Finally, the offspring’s (called ) chromosome becomes

(17)

where denotes a mutated gene. We then replace the
current population by the survivors and their
offspring and obtain the population of the next generation.

C. Implementation

To apply this concept to determine an NN model, we
defined a translation rule between the chromosome and the
configuration of an NN.

Since the number of neurons in both the input and output
layers can be determined according to the model type (such
as the model in Section III or the seven-intrinsic-element
model [3], etc.), we do not have to include them as members
of the chromosome. Thus,
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Fig. 10. Correspondence between chromosomeGi and the configuration of
an NN. Neurons enclosed within dashed lines are the objects of a genetic
algorithm. White neurons are inactive and gray neurons are active. The
combination of the gray neurons illustrates an obtained NN model forCgs.

Rule 1: The length of the chromosome indicates the
maximum number of hidden layers. This shrinks the size of
the searching space.

Rule 2: The value of the gene represents the number of
neurons in each hidden layer.

Here, we allowed a gene to take multilevel integer values in
the range of, e.g., 0– – . This multilevel integer notation is
more compact and convenient than the binary gene notations
that commonly appear in texts. Moreover, as the bias neuron
is automatically added by our program, we can exclude its
count from the value of a gene.

Rule 3: A gene of zero value indicates a null layer.
Fig. 10 illustrates a concrete example of these rules; an NN

having two inputs, one output, and a chromosome described
as corresponds to a four-layer NN. A gene of
two in represents two gray neurons.

Rule 4: A chromosome including genes of zero value has
possible ways of describing an NN

of the same configuration. In the above example, and
are equivalent to . We carefully avoided creating

equivalent individuals in the initial populations to achieve as
wide a variety of individuals as possible.

Rule 5: We defined the fitness value as

(18)

where denotes the fitting error of the NN generated from
chromosome , and is the total number of active neurons,
i.e.,

(19)

This shows that we looked for the simplest configuration
possible for an NN generating error values below. In the
case of Fig. 10, and .

Fig. 11. Average fitness values relative to generation for a one-element
model. The solid line is for(Nn; Np) = (10; 50), the dotted line denotes
(7, 30), and the dashed line denotes (5, 10). Regardless of differences in
the initial conditions, the values commonly approach the same configuration
within 20 generations.

For every generation, we temporarily saved each individ-
ual’s chromosome and synaptic weighting factors on a disc. If
an NN in the next generation has a chromosome equivalent
to one of its ancestors, we trained it with the inherited
weighting factors. These saved weighting factors worked as the
evolutionary gains of the former occupants and promoted the
convergence [11]. As these gains are updated every generation,
the chance to leave inheritance is open to each individual.

D. Measurement

We presumed that represents the maximum number of
neurons in one layer, denotes the maximum number of
hidden layers, and denotes the maximum number of
generations. The parameters %, %, and %,
are used here.

We first determined the structure of model. The con-
vergence stability was studied by supplying different
and values. We assumed and

. Considering previous studies [3], it seemed adequate
to set to fit only one equivalent-circuit element.
Fig. 11 charts the average fitness versus generations. In this
figure, the lines correspond to the conditions of

, (7, 30), and (5, 10). In all cases, the populations
converge to the same configuration of . The NN for
this configuration is also shown in Fig. 10. It is clearly seen
that the populations approach convergence in the early stages
of evolution. From these results, we can obtain an optimum
configuration within 20 generations.

The fitting results for by using the predetermined NN
is shown in [11]. A difference in error values of less than
0.0002 (3.0% of the root-mean-square (rms) error) between
the measured and calculated values can be achieved.

Through experiment, we previously found an NN which
simultaneously models the seven intrinsic elements (

) of the equivalent circuit [3]. Its configuration is
represented as , and has 4% of the rms errors.

We then assumed with , ,
, and . Fig. 12 shows the average fitness

versus the generation. These populations also converge in the
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Fig. 12. Average fitness values relative to generation for a seven-element
model.

early stages of evolution, and we obtained the configuration
. The rms error is 2.8%. This result is better than that

obtained in our previous work [3].

V. CONCLUSION

We reported on two different techniques to determine the
optimum multilayered large-signal NN model of an HEMT.
This is the first report regarding techniques for building a
general NN device model.

An HEMT’s bias-dependent intrinsic elements were rep-
resented by a generalized multilayered NN. We began by
experimentally studying the influence of the training param-
eters on the fitting errors by using data as an example.
The best values were found to be in the vicinity of

and . We then checked the behavior of the
training error in relation to the number of iterations for NN’s
of different configurations. The output error was drastically
reduced after a few thousand training cycles. This indicated
that the elementary training had finished and that the better
part of the synaptic connections were specialized for certain
data. In addition, the calculation times needed for one training
iteration were checked under various network configurations
in order to find the rational NN’s size.

We first studied a pruning technique. Pruning was adopted
to sufficiently specialized synaptic connections after several
elementary training iterations. By considering the flow of net
information through each connection, we terminated the less
active connections which carry little information.

We confined this pruning routine to within the normal back
propagation and obtained good results.

We then applied a genetic algorithm for the same purpose. A
network configuration can be described as the chromosomes of
a virtual creature. To achieve as fast a convergence as possible,
we introduced the concept of the evolutionary gains of the
former occupants in the evolution process. We successfully
determined the optimum NN model by simulating the
evolution of virtual creatures. Regardless of different initial
conditions, we could obtain the same network configuration
for a model. This verifies the reliability of our approach.

We also obtained a single NN model that simultaneously
represents seven equivalent-circuit elements. These NN’s pro-

duced a closer agreement with the actual data than those
determined experimentally.

The pruning approach tries to arrive at an optimum con-
figuration through training on a single NN of excessive size.
We can obtain a simplified NN within a few minutes in this
manner. However, if an NN becomes bogged down with
unpredictable fluctuations during the training, we have to
find and adjust suspicious parameters and restart the training.
Moreover, it is difficult to estimate the excessive size to start
with for an NN of a particular type of data.

On the other hand, the genetic approach requires a few
days on a workstation to obtain a final result. However,
this approach has two significant advantages. First, due to
the competitive training of many individuals, if one of them
becomes stuck in a fluctuating trap, the other individuals will
still be able to escape from the trap. This is also suggested by
the fact that the occurrence of fluctuations on the training curve
results from a slight change in the initial conditions. Second, in
this approach, the selection of the optimum NN is done accord-
ing to the explicit and easy-to-comprehend figures-of-merit
(fitness).

The calculation load is very heavy when using only one
computer, but if we consider the genetic approach as a
distributed system, such as a client-server system, we are sure
we can shrink the computational costs to within several dozen
minutes.

As a result, the genetic approach is more convenient for
operators without NN backgrounds. We are now trying to
implement an NN program as a server running on many
workstations, and the genetic evolution program as a client,
in order to avoid computational problems.
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