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Abstract—This paper reports on the structure of a large-signal number and type of nonlinear features by simply changing
neural-network (NN) high electron-mobility transistor (HEMT)  their configurations.
model as determined by a pruning technique and a genetic ; _ ) .
algorithm. The bias-dependent intrinsic elements of an HEMT's As with the look L:1p }ab:(e mOdsll [61, dN'I\l S ar.e hlgf’:ly
equivalent circuit are described by a generalized multilayered NN &Ccurate. However, the look-up table model requires a large
whose inputs are the gate-to-source biasif.) and the drain-to- ~database, which can sometimes reach several megabytes. The

source bias ¥i). Using Cy. data as an example, we began by response of the NN can only be determined by using a few
experimentally examining some of the features of the multilay- hyndred coefficients [3].

ered NN model to obtain rules-of-thumb on choosing training
parameters and other information for succeeding studies. We The NN model overcomes the drawbacks of the closed-form

then developed and studied a novel pruning technique to optimize @nd look-up table models, while retaining their advantages.
the C.s NN model. Excessively large NN configurations can be However, it is difficult to determine the proper configuration

reduced to an appropriate size by means of a weight decay, with this attractive NN. As a result, the NN models reported
which is based on the analysis of a synaptic connection’s activity. are almost always limited to a three-layer configuration, which

Finally, we employed a genetic algorithm for the same purpose. t eith inale | . | el t 2 I
By representing the configuration of a standard multilayered NN can represent either a single large-signal element [2] or a

as a chromosome, the optimum configuration of aC.. model €lements with a large number of neurons [1].
was obtained through a simulated evolution process. For this  In this paper, we report on a pruning approach [7], [8]
approach, the configuration of an NN that simultaneously repre- gnd a genetic approach [9]-[11] to determine the optimum

sents seven intrinsic element{,s, R;, - -, Ca,) of an equivalent . .
circuit was also shown for comparison to previous work. We suc- multilayered large-signal NN model of an HEMT.

cessfully obtained simplified NN models using both approaches. 10 enable its future _implementation on standr?lrd circuit sim-
The advantages and disadvantages of these two approaches arallators, we characterized the HEMT's large-signal behavior

discussed in the conclusion. To our knowledge, this is the first in terms of the intrinsic elements of a conventional small-
report to clarify the general process of building an NN device gigna| equivalent circuit [12]. The bias-dependent elements
model. . .
are described by an NN composed of an arbitrary number
Index Terms—Genetic algorithm, HEMT, large-signal model, of neurons and layers (called a generalized multilayered NN).
neural network, pruning algorithm. We first examined some of the features of multilayered NN's
for a Cg model experimentally, in order to collect useful
|. INTRODUCTION information for succeeding studies.
Compared to other significant large-signal elements such
gm, Cg is more difficult to model with the conventional
osed-form equation [5]. Thus, th€,, model is preferable
of revealing the usefulness of the NN approach.

HE popularization of high-frequency wireless systems
demands an effective method to quickly and accurate
design components. Large-signal modeling for active devic
such as high electron-mobility transistors (HEMT's), is th , ) )
most fundamental technology available to meet this demand Ve then developed and studied a novel pruning technique to

Recently, novel models based on neural networks (NN's) haggtermine the structure of an NN. This technique causes NN'’s

been reported [1]-[3]. As in closed-form equation models [4 '|th larger than necessary configurations to lose their unimpor-
t synaptic connections (including those of neurons) during

[5], NN’s have the adaptability necessary to represent a stro i o s ’
nonlinearlity. However, closed-form equation models must {¥CK-propagation training to eventually achieve the optimum

changed to fit the particular device type. NN's can support ag%rr‘]feig;';agovr\‘le[i;]ﬁt[2]8'(:;36[3;‘38':3"3'] c;fntz(:]z(layscicsmgfe;:?gi t?vri?y
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Fig. 1. Multilayered NN. Each circle is a neuron, and the boxes enclosing several neurons are layers. At the far left is the input layer and atttie far righ
the output layer. The neuron at the bottom of each layer, excluding the output layer, provides bias values to the neurons in the succeeding layer.

represents all the intrinsic elements of an HEMT’s equivalenthere subscripi(n =0, ---, N — 1) denotes the number of

circuit in order to compare it with our previous work [3].  bias points, and denotes a sigmoid function defined as
Finally, we evaluated the advantages and disadvantages of 1

the above two methods. s(z; @, b) = 1+ expl—a(z + )] (3)

In (3), @ and b are parameters. Then,, b;(i = 1, 2) in (1)

II. MULTILAYERED NN'S and oy, B3i(i = 1, ---7) in (2) are determined independently
. . . o according to the desired data range. For exampléif=
For its future m_wplementatlon on common-circuit 5|mula-_0'8 t0 0.4 V, thena, = 1.0 andb; = 0.2 would be good
_tors, we charactgrlzgd .the large-signal behavior pf an HEN}: oices.
in terms qf the |nFr|n§|c elements of a conventional small- Generally, when thexth data is supplied to the NN, the
signal equivalent circuit. Thg measured dz;ta_ of these elemellﬂtr');ut to thejth neuron in thekth layer is described as
versusV,, and Vy, was obtained from multibia§-parameter .
measurements [12]. k gl k—1 k—1

Fig. 1 shows the generalized multilayered NN used to model ~ *4,» = Z Wi j Yin o k=1, Np—-1 (4
the data. In this figure, we assume that the number of layers is =0
N7, and that thekth layer includesVy, +1 neurons. The bottom Where w} ' denotes the weighting factor that connects the
neuron of each layer, excluding the output layer, supplies tH# neuron in the(k — 1)th layer with thejth neuron in the
bias to the neurons in the succeeding layer. kth layer.

We abbreviated the network configuration f8,( Ny, - - -, The output from this neuron is represented as
é\jf\fNL_jif) and eprress) anNI\ll\IN having such a configuration as yf = S(x§ L 1,0), k=0, -, Ny —1. (5)

0, £Vl """y INNp—1) — . . .

We adopted aL batch-mode back-propagation algorithm !fb the back-propagation algorithm, the network adaptafibn
train this NN [3]. is evaluated by

To obtain a training convergence and good extrapolations, N-1 Nr—1 N-1
we normalized the raw data and bias voltages within acommon E = Z {% Z (™t = di,n)Q} = Z E, (6)

range of 0—1 throughout this paper [3]. We then defined the n=0 i=1 n=0
set of input data vectors? and teaching data vectods, as wherey ¥ ~'(i = 1, ---, N — 1) is the network output (we
follows: fixed the subscript of the bias neuron to zero for convenience
o o o in programming, so the subscript of the neurons in the output
X, = (%1, 0> T2,0) layer begins with one).
= {s(Vis,: a1, b1), s(Vus,,; a2, b2)} Q) The correction terms in the training iterations are given by
= ‘ oF 4
dn (dl,ru d2,n7 ) d7,n) 6wi;1(m) =7 — + aéwijl(m _ 1) (7)
= {S[Cgs(‘/gsnv Vdsn); o, [31]7 U aw7,]

5[Cas(Vgs, » Vas, )s ar, 7]} (2) wherem denotes the loop counter [3].
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Fig. 2. Error contours in relation to learning rafeand momentum factos. The range ofF is defined above. The network configuration was (2, 5, 5, 1).
The number of iterations was fixed at 10 000. A minimum error was stably achieved in the vicinjty=00.9 anda = 0.8.

NN’s require several parameters, not only for training, butierations. A similar phenomena can be observed with different
also for specifying the network configuration. However, thecombinations of network configurations, and «, but it is
effects on the training characteristics have not been sufficientiyrrently difficult to predict its cause. This test was also
analyzed, especially in the case of multilayered NN’s. Ugerformed on NN’s with other configurations, and we presume
ing a Cy, model as an example, we experimentally studietiat it is acceptable to fix the maximum number of iterations
various features of a multilayered NN to obtain guideline® 10 000.
for subsequent studies. The data referred to throughout thidvloreover, the genetic approach [11] is supposedly much
paper corresponds to an HEMT with a 0.2B-long and more time-consuming than other approaches [7], [8]. It is
1004:m-wide gate. helpful to compare the calculation time of one training period

Fig. 2 shows the fitting error contours versus the paramet@@inst NN's of various configurations. Fig. 4 shows the
n (learning rate) andr (momentum factor) in the case of arcalculation time required for one iteration relative to the
NN with a (2, 5, 5, 1) configuration. The number of iterationg€twork configuration. The machine we used was an HP-
is 10 000. A minimum number of errors can be obtained in tHel2/80. This graph allows us to predict the total training time
vicinity of » = 0.9 and« = 0.8. These values generate goodmd to assign the rational number of layers (and neurons) to
results for NN’s of different network configurations. Therefore2ur machine from the viewpoint of calculation costs.
we fixed them at these values.

Fig. 3 shows the fitting error behavior versus the number of Ill. PRUNING TECHNIQUE
iterations for NN's with configurations of (2, 5, 1), (2, 5, 5, 1), A pruning technique [7], [8] is analogous to the creation
and (2, 5, 5, 5, 1). It should be noted that the trainingf synaptic connections in actual life forms, i.e., many (or
curve of the (2, 5, 5, 1)-NN fluctuates near the end of thaghly redundant) synaptic connections are first formed as
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wherek denotes the number of Iaye@’jn is the output from

T T T T T T3 thedth neuron in thekth layer,» denotes the amount of data,
] and
~2 | N—-1
1.0x10 = —- 1 4
] =5 v ©)
1] ] n=0
LoxIC ] At this point, thejth neuron in thekth layer accepts the net
' information
Lox1o™ )? (10)

0] ! 2 3 4 5 6 7 8 9 10

Iterations x 10° (times) . .
where N, denotes the number of active neurons in ftb
Fig. 3. Error versus number of iterations with= 0.9 ando = 0.8 used er
for each case. The graph shows the training curves of (a) a (2, 5, l)-l\}ﬁ,y ’ . . L. L
(b) a (2, 5,5, 1)-NN, and (c) a (2, 5, 5, 5, 1)-NN. Some fluctuations appear W€ then introduced the following new activity af; ;:

on the curves.

Al
ko i
1.0x10% ¢ T R (11
: E J
10x10% [ B. Implementation and Measurement
N : Fig. 5 shows the flowchart for our pruning technique. We
S 10x10 | ; . . o
] : confined the pruning routine to take place within a normal
- back-propagation process [3], [7]. An initial NN of excessive
1.0 E . . . .
g size is generated, and the pruning threshigjdis set to\Ey,
oxio! L whereA (1.0 > )) is a parameter anfy is the given objective
) error level.
lox102 L= /N e To successfully eliminate the inessential connections, they
' 10 10xI10 1OxI0? 1oxio>  should be removed after pertinent connections have been
Neurons per layer sufficiently specialized for certain stimulations (elementary

, , _ - _ training). Parametei is adjusted when this specialization is
Fig. 4. Time consumption for one training cycle relative to the number of d havi b leted d I
neurons per layer. Lines (a)—(e) represent NN’s with 1-5 hidden layers. Iﬁ%peCte. as having been completed, and we usually use a
example, the rational number of neurons for a five-layer (three hidden layegf)nvenient value of 2-10.
NN4cc)orresp0nding to a single-hidden-layer NN composed of 1000 neurons|f the output errotF falls belopr, we calculate the activity
15 4% of each weighting factor and eliminate or decay it according

to the following three rules.

a blueprint in a gene. Unnecessary connections are therRule 1: If |w§‘;j| < 1.0, then wfl
terminated according to elementary training (infancy) in aeuron).
particular habitat. This initial training determines the basic This means that the output of a sigmoid function is confined

is terminated (for each

response style of an individual. to a range between zero and one, and if a weighting factor
smaller than one only acts to reduce the significance of the
A. Synaptic Connection Activities transmitted information, then it should be removed. This is

. . : fone by assuming that “1 is small fap? .” and that “a
The predominant part of previously proposed pruning tech- . P . L J

nigues commonly focus on the magnitude of the weightin?g_m_f'cantwi:i IS typlc’:,ally larger than unity after elementary
factors, which are minimized by including some cost function?'"'"9 has f’imshed. e
in an error used for the original back-propagation [7], [8]. Rule 2: It €, < 0.1, thenw;; is decayed (for ea_tch neuron,
However, since these magnitudes do not necessarily repre%@ﬁept the biasing neuron). The decaying quantity we used is
the complexity of an NN, the resultant NN can sometimes have Swk . = —uwk i sgn(w?“ ) (12)
only small weighting factors. We thus developed and studied e e e
a novel approach that evaluates the importance of synaptifere is a parameter to adjust the decaying speed for each

connections according to their activity. iteration. We used 0.2 for micron. This decaying rate is kept
During one training period, the mean information flowntil the next round of pruning occurs.
through a weighting factomw) ; is represented as Rule 2 evaluates the activity of connectiarf ; to the jth
neuron in thekth layer from the viewpoint of net information
k41 1= k (kK RY]2 ﬂOW.' . . -
i TN Z[wi,j(yi,n_yi )] (8) Since Rule 2 is no longer effective for biasing neuron

n=0 connections or neurons having a single connection, the output
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1. Create initial NN
Ep = }"EO

Back propagation training frame

e = T S U

2. Calculate output error E <

Print result

Fig. 6. NN model forCgs obtained by pruning. Unnecessary connections
and neurons have been terminated.
1ox10 '
3. Pruning rules satisfied ? ' i I ' ‘ I I ‘ I I I
10xI0 2 .
4, Perform pruning ]
uJ B
Ep=Ep/y L J
-3
* LOxIO  F
—® 5. Update weightings L ox 10..4 ) 1 | | 1 ) 1 1 ‘
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Iterations x 103 (times)

Fig. 5. Flowchart of pruning algorithm. Fig. 7. Training curve olCgs model with pruning.

error in which the weighting factor in question is forced to zero Moreover, note that no fluctuations appear on the training
is used as an alternative to Rule 2. Thus, we defined Rule 3%Ve, despite their presence on the original (2, 5, 5, 1)-NN.

k
Ko {0, B(wi; =0) < B, IV. GENETIC ALGORITHM

0 J ngj, E(wﬁjj =0) > E,.
We then updatedz, to A. Virtual Creatures
E A genetic algorithm [9], [10] is a method used to solve
E,=—" (13) problems such as optimizations via a computer simulation of
Y

) ) the evolutionary process of the population of virtual creatures.
where y(1 < v < A) is the reduction rate offs,. E, A yirual creature has a chromosome that determines its degree
then approaches, according to how many times the NN finess to a particular habitat. This chromosome is composed
underwent the pruning process. The significant weighting 5 set of genes.
factors are updated with (7), and the inessential ones argye assume that the population includ®¥s members, and

decayed with (12). If£ is not smaller thanko, steps 2-5 that theith individual has a chromosomé; and a fitness
in Fig. 5 are repeated. value f; defined as
We applied this algorithm to a (2, 5, 5, 1)-NN for modeling

large-signalC,,. Fig. 6 shows the obtained NN. Due to the Gi={g5: g, -+ gn, 1} (14)
elementary training, our pruning can generate a sufficientéyd

simplified network, as well as establish a good convergence. £ = f(Gy) (15)
Fig. 7 shows its training curve. Even though some peaks ’ ’

resulting from a hard pruning appeared during the traininghereg}(j =0, ---, N, — 1) denotes each gene, aid, is
(see Rule 1), elementary-trained NN’s exhibit stable traininghe number of genes in one chromosome. Funcfidn (15)
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. Generate initial populations
Generation =0

l N,-M

2. Evaluate fitness values and
rearrange individuals

'

3. Natural selection; 100
weed out s% of population

_stp

l k-th generation (k+1)-th generation

Fig. 9. Natural selection, reproduction (mutation), and generation shift. The
block on the right represents the rearranged population in the order of
increasing fitness at theth generation. Individuale andb are selected at

a probability of Pa and Pb from the population at théth generation, and
mutants generate their offspringd at the(k + 1)th generation. Hatched areas denote
the individuals to be removed.

4. Reproduction and generate

s being the selection rate. Consequenily, — M individuals
survived. Among the survivors, and allowing for duplication,
we pick M pairs of individuals and generate their offspring.

At this point, theith individual is randomly selected by the
following probability [11]:

Generation = Ngen ?
Generation = Generation + 1

_ fi
b= | oM (16)
Print Result - .
N, o
k=0
Fig. 8. Flowchart of genetic algorithm. This means that an individual with a higher fitness is inclined

to have more offspring. This process is regarded as being
analogous to reproduction.

9% the reproduction process, when individualsand b are
selected as one of these pairs, ttiegene of their offspring is
chosen from théth gene inG, at a probability ofp or from

B. Algorithm the ¢th gene inG, at a probability ofl — p. p is called the

Fig. 8 is a flowchart of a genetic algorithm [11]. First weSrossover rate. At the same time, each offspring’s gene also

generate an initial population composed)gf individuals and suffers from a mu_tation at a probability 0f%. This mutation .
initialize the chromosome of each with random values. V\Zflte should remain rather low because too many mutants wil
then calculate each individual's fitness and rearrange them rupt the evolutlonary convergence of the population.

order of increasing fitness. The population undergoes natura inally, the offspring’s (calledib) chromosome becomes
selection, reproduction, and the succession of generations. Ga = {93, 00, 93, -, Gno_1} a7
Steps 2—4 are repeated until either the population adequately

fits the conditions or the number of generations reaches Y&€re g%, , denotes a mutated gene. We then replace the

maximum value. current population by the&V,, — A survivors and theird/

Fig. 9 illustrates steps 3 and 4 (from Fig. 8), which are tHffSPring and obtain the population of the next generation.

significant steps in this algorithm. In this figure, the block on )

the left shows the rearranged population atAttegeneration. C- Implementation

The individual at the top of the block has the maximum fitness To apply this concept to determine an NN model, we

and the individual at the bottom has the minimum fitness. defined a translation rule between the chromosome and the
The block on the right illustrates the population at theonfiguration of an NN.

succeeding generation in the middle of the generation shift. Since the number of neurons in both the input and output
In natural selection, we weed osft of the creatures from layers can be determined according to the model type (such

the individuals having the lowest fitness value, i.8f, = as theC,, model in Section Ill or the seven-intrinsic-element

N, x s/100 individuals are terminated from the curreitl{) model [3], etc.), we do not have to include them as members

population. This process is analogous to natural selection wiahthe chromosome. Thus,

calculates the fitness value of the chromosome, which chan
according to the type of application [11].
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Fig. 11. Average fitness values relative to generation for a one-element
model. The solid line is foN,,, N,,) = (10, 50), the dotted line denotes

(7, 30), and the dashed line denotes (5, 10). Regardless of differences in
Fig. 10. Correspondence between chromoséimend the configuration of the initial conditions, the values commonly approach the same configuration
an NN. Neurons enclosed within dashed lines are the objects of a gengiithin 20 generations.

algorithm. White neurons are inactive and gray neurons are active. The

combination of the gray neurons illustrates an obtained NN model'fer

For every generation, we temporarily saved each individ-
Rule 1: The length of the chromosom, indicates the ual's chromosome and synaptic weighting factors on a disc. If
- g

maximum number of hidden layers. This shrinks the size gp NN mfthe next generation hag adchromohsor;]e (_eqhuw.alznt
the searching space. to one of its ancestors, we trained it with the inherite

Rule 2: The value of the gene represents the number Wighting factors. These saved weighting factors worked as the
neurons .in each hidden layer evolutionary gains of the former occupants and promoted the

Here, we allowed a gene to take multilevel integer values nvergence [11]. As these gains are updated every generation,
the ran:qe of, e.g., O%,—1. This multilevel integer notation is the chance to leave inheritance is open to each individual.

more compact and convenient than the binary gene notations

that commonly appear in texts. Moreover, as the bias neurgn Measurement

is automatically added by our program, we can exclude itswe presumed thad,, represents the maximum number of

count from the value of a gene. neurons in one layerN; denotes the maximum number of
Rule 3: A gene of zero value indicates a null layer. hidden layers, andV,., denotes the maximum number of
Fig. 10 illustrates a concrete example of these rules; an Nfdnerations. The parameters: 40%, p = 50%, andm = 1%,

having two inputs, one output, and a chromosome describgé used here.

asG; = {2, 0, 3} corresponds to a four-layer NN. A gene of e first determined the structure 6f,; model. The con-

two in G; represents two gray neurons. vergence stability was studied by supplying differen,
Rule 4: A chromosome including genes of zero value hasand N, values. We assumedy = 0.00075 and Nye, =

NyCp = Ny!/n{(N,—n) possible ways of describing an NN50. Considering previous studies [3], it seemed adequate

of the same configuration. In the above exampte,3, 0} and to set N, = 3 to fit only one equivalent-circuit element.

{0, 2, 3} are equivalent ta¥;. We carefully avoided creating Fig. 11 charts the average fitness versus generations. In this

equivalent individuals in the initial populations to achieve afgure, the lines correspond to the conditions(&f,, N,) =

wide a variety of individuals as possible. (10, 50), (7, 30), and (5, 10). In all cases, the populations
Rule 5: We defined the fitness value as converge to the same configuration {&, 3}. The NN for
1 this configuration is also shown in Fig. 10. It is clearly seen
£ Ei > Eo that the populations approach convergence in the early stages
fi=4 7 N—N, (18)  of evolution. From these results, we can obtain an optimum
E; <1 + T)v L < Eo configuration within 20 generations.

The fitting results forC,, by using the predetermined NN
where E; denotes the fitting error of the NN generated frors shown in [11]. A difference in error values of less than
chromosoméx;, and N, is the total number of active neurons.0002 (3.0% of the root-mean-square (rms) error) between

ie., the measured and calculated values can be achieved.
Ny_o Through experiment, we previously found an NN which
N, = Z N;, 0< N; < N,. (19) simultaneously models_ the seven intrinsic elemer(tj%s,(_
youct R;, -+, Cys) of the equivalent circuit [3]. Its configuration is

represented a§3, 5, 7}, and has 4% of the rms errors.
This shows that we looked for the simplest configuration We then assumed, = 0.0008 with Nyen, = 20, Ny = 4,
possible for an NN generating error values bel&w In the N, = 10, and N, = 50. Fig. 12 shows the average fitness
case of Fig. 10NV,, = 15 and N, = 5. versus the generation. These populations also converge in the
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2000 duced a closer agreement with the actual data than those
determined experimentally.

The pruning approach tries to arrive at an optimum con-
figuration through training on a single NN of excessive size.
We can obtain a simplified NN within a few minutes in this
manner. However, if an NN becomes bogged down with
unpredictable fluctuations during the training, we have to
find and adjust suspicious parameters and restart the training.
Moreover, it is difficult to estimate the excessive size to start
with for an NN of a particular type of data.

On the other hand, the genetic approach requires a few
days on a workstation to obtain a final result. However,
this approach has two significant advantages. First, due to
Fig. 12. Average fitness values relative to generation for a seven-elemti@ competitive training of many individuals, if one of them
model. becomes stuck in a fluctuating trap, the other individuals will

still be able to escape from the trap. This is also suggested by

early stages of evolution, and we obtained the configuratig?lefaCt that the occurrence of fluctuations on the training curve

{3, 5, 9. The rms error is 2.8%. This result is better than th&gsults from a slight change in the initial conditions. Second, in
obtained in our previous work [3]. this approach, the selection of the optimum NN is done accord-

ing to the explicit and easy-to-comprehend figures-of-merit
(fitness).
V. CONCLUSION The calculation load is very heavy when using only one

We reported on two different techniques to determine tif@mputer, but if we consider the genetic approach as a
optimum multilayered large-signal NN model of an HEMTdistributed system, such as a client-server system, we are sure
This is the first report regarding techniques for building e can shrink the computational costs to within several dozen
general NN device model. minutes.

An HEMT'’s bias-dependent intrinsic elements were rep- As a result, the genetic approach is more convenient for
resented by a generalized multilayered NN. We began Bperators without NN backgrounds. We are now trying to
experimentally studying the influence of the training paranimplement an NN program as a server running on many
eters on the fitting errors by using,. data as an example.Workstations, and the genetic evolution program as a client,
The best values were found to be in the vicinity pf= in order to avoid computational problems.

0.9 and « = 0.8. We then checked the behavior of the
training error in relation to the number of iterations for NN’s
of different configurations. The output error was drastically
reduced after a few thousand training cycles. This indicatefl] A H. zaabab, Q. Zhang, and M. Nakhla, “A neural network modeling
that the elementary training had finished and that the better approach to circuit optimization and statistical desigtEEE Trans.
part of the synapiic connections were specialized fo certaiy, Ygovaye Tieen echiol £ po,Lois 1358 e dooe,
data. In addition, the calculation times needed for one training

accurate neural network model of FET for intermodulation and power
iteration were checked under various network configurations analysis,” in Proc. 26th European Microwave ConfBrague, Czech
in order to find the rational NN’s size.
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